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Rotated Boundary Conditions 
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We investigate the six-vertex model on a square lattice rotated through an 
arbitrary angle with respect to the coordinate axes, a model recently introduced 
by Litvin and Priezzhev. Auxiliary vertices are used to define an inhomogeneous 
system which leads to a one-parameter family of commuting transfer matrices. 
A product of commuting transfer matrices can be interpreted as a transfer 
matrix acting on zigzag wails in the rotated system. Using an equation for com- 
muting transfer matrices, we calculate their eigenvalues. Finite-size properties of 
the model are discussed from the viewpoint of the conformal field theory. 

KEY WORDS: Six-vertex model; transfer matrix; lattice rotation; auxiliary 
vertex; conformal invariance; XXZ-Heisenberg chain. 

1. I N T R O D U C T I O N  

Litvin  and  Priezzhev ~ ( L P )  invest igated the six-vertex mode l  defined on  
a square  lattice ro ta ted  t h ro u g h  an  a rb i t r a ry  angle  q~ with respect to the 
coo rd ina t e  axes (Fig. 1). Us ing  a r a n d o m - w a l k  formalism,  LP  der ived the 
Bethe ansa tz  e q u a t i o n  <2-41 for general  cp. In  the case of the ice mode l  the 
Bethe ansa tz  e q u a t i o n  was solved numer ica l ly  to show that  several cases of  
cp give the same value  of  the per-site en t ro p y  s i =  (3/2) 1n(4/3) 13~. 

L P  indica ted  that ,  when  we cons ider  finite-size proper t ies  of  the 
model ,  lattice, ro t a t ions  offer more  in teres t ing  problems:  F o r  example,  if we 
assume a confo rmal ly  i n v a r i an t  mode l  15-7) wrapped  o n  a torus  of size 
I x  l '(l '>> l>> 1), it follows tha t  the free energy F mus t  be of  the form ~8~ 

F =  l l ' f  - ( l ' / l ) ( n c / 6  ) + . . .  (1.1) 
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Fig. 1. 

(a) (b) 

A square lattice (a) in the natural orientation and (b) rotated through ~0 with respect 
to the coordinate axes. 

where f is the per-site free energy and c is a universal number  called the 
central charge. For  the six-vertex model the value of  c has been determined 
in analyses for ~o=0 ~9-11 and ~/4.1121 It is desirable to show that the I'll 
correction term in (1.1) is invariant under lattice rotations. 

Recently, we developed a new method for solving interacting hard 
squares on a rotated lattice. ~'31 We introduced auxiliary faces into a rotated 
system to relate it to an inhomogeneous one in the natural orientation ~0 = 0 
(Fig. la). The inhomogeneous system was investigated by a commuting 
transfer matrices argument. ~41 

The auxiliary faces (or vertices) method is a general one, applicable 
to a wide class of  solvable models. In this paper we use it to analyze the 
six-vertex model on a rotated lattice. We assume a gapless regime of  the 
model. Finite-size properties are discussed from the viewpoint of  the 
conformal field theory. 

The present paper is organized as follows. In Section 2 we introduce 
the six-vertex model. In Section 3 we define an inhomogeneous system by 
the use of auxiliary vertices. The inhomogeneous system leads to a one- 
parameter family of  commuting transfer matrices. We investigate an 
equation for commuting transfer matrices to determine their eigenvalues. 
Using calculated eigenvalues, we analyze the six-vertex model on a rotated 
lattice. Section 4 is devoted to a summary and discussion. 

2. S IX-VERTEX MODEL: GAPLESS REGIME 

In the six-vertex model an arrow is placed on every edge of a square 
lattice so that two arrows point into and out of  each site (or vertex). ~4~ The 
Boltzmann weight is assigned on each vertex depending on the arrow con- 
figurations around it. For  definiteness we assume a square lattice in the 
natural orientation here. Then, arrow configurations are represented by 
associating an arrow spin ~j with each edge j; ctj = + 1 if the corresponding 
arrow points up or to the right, and ~j-- - 1 otherwise. 

There are six possible arrow configurations around a vertex (Fig. 2a). 
By W(v,~]fl , /~)  we denote the Boltzmann weight of  a vertex with 
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Fig. 2. Arrow configurations around a vertex. 

a r row-sp ins  v, a, lt, a n d  fl counterc lockwise  s ta r t ing  from the west edge 
(Fig. 2b). The  B o l t z m a n n  weights W are pa ramet r i zed  as 

a = W( + + [ + + ) = W( - - [ - - ) = s inh(2/2  - v)/sinh 2 

b = HI( + - [ - + ) = W( - + I + - ) = s inh(2/2  + v)/sinh 2 

c = W ( + - I + - ) = w ( - + l - + ) = l  

(2.1) 

In  this paper  analyses  are restricted to a gapless regime, where the cross ing 
pa r ame te r  2 and  the spectral  p a r ame t e r  v are imag ina ry  numbers :  

2 =  --i,~, 0 < ~ . < n  

v = - -  i6, - -  2 / 2  < 6 < 2 / 2  
(2.2) 

W h e n  , ~ = 2 n / 3  and  g = 0 ,  the mode l  reduces to the ice model .  O'41 The 
B o l t z m a n n  weights W satisfy the Y a n g - B a x t e r  re la t ion  ~4' 14, ~sl 

W(/L, ~1 y,K' Iv) W(v, ylfl, v" Iv') W(v",/l"l v',K Iv") 
)', It", v" 

= ~ W(v,~lv",K'lv") w(/~",~ly, KIv ' )  W(v",rlfl, v'lv) (2.3) 

for all ~, fl , / t ,  v, i t ' ,  v' = ___ 1 with v' = v + v"  + 2/2. The  fol lowing proper t ies  
are also satisfied by W: It4' tsl the s t anda rd  ini t ial  cond i t i on  

W(v, 0el/L Iz [ - 2 / 2 )  = 6(v, jff) a(0c, Iz) (2.4) 

822/82/5-6-20 
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and crossing symmetry 

W(v,< S~,lx I - v ) =  w(~, -,zl -v,/7 Iv) 

Using (2,5) in (2.4), we obtain 

W(v, ~1 fl,/~ I,t/2)=a(v, -~ )a ( f l ,  -/~) 

(2.5) 

(2.4') 

3. FINITE-SIZE PROPERTIES 

In this section we consider an inhomogeneous system which is related 
to the six-vertex model on a rotated lattice. The inhomogeneous system 
leads to a one-parameter family of commuting transfer matrices. A product 
of commuting transfer matrices can be interpreted as a transfer matrix 
acting on zigzag walls in the rotated system. We use an equation for com- 
muting transfer matrices to determine their eigenvalues. We discuss finite- 
size properties of the rotated model from the viewpoint of the conformal 
field theory. 

- )42  
U o 

V j k  ~ - -  bl 0 

2/2 

with 

3.1. Auxil iary Vertices Method 

We explain the method used to solve the six-vertex model on a rotated 
lattice. We start by defining an inhomogeneous system. (~3) Suppose a 
square lattice of M + N columns and M ' +  N'  rows in the natural orienta- 
tion (M=lm, N = h , , M ' = l ' m , N ' = l ' n ,  with M + N  and M ' + N '  even). 
We impose on it periodic boundary conditions in both directions. We also 
assumed that the spectral parameter v can vary from site to site. We denote 
the value of v for the site (j, k) by vjk. Set the vj~ to be 

for O<~j<~m- 1, O~<k~<n-  1 (mod re+n) 
for m ~ < j ~ < m + l * - l ,  0~<k~<11-1 ( m o d m + n )  

(3.1) 
for O<~j<~m-1, n< .k<~m+n-1  ( m o d m + n )  

for m<~j<<,m+n--1, n<~k<~m+n-1 ( m o d m + n )  

UO = -- it/0, -- ~./2 < t/0 < )~/2 ( 3.2 ) 

(Fig. 3a). The vertices vjk = - 2 / 2  and 2/2 are auxiliary ones. 
The inhomogeneous system (3.1) is related to the six-vertex model on 

a rotated lattice. To see this, we decompose auxiliary vertices as follows. 
Noting the standard initial condition (2.4), we separate the east and south 
edges from the west and north ones at each auxiliary vertex Vjk = --2/2 
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Fig. 3. (a) Inhomogeneous system (3.1) with m = 2 and n = 1. Vertices v= - / l /2  (respectively 
u o , - u o ,  ),/2) are shown by x (respectively O, O, +).  (b) Decomposing auxiliary vertices 
v = - 2 / 2  and 3./2, we deform the lattice into a rotated one. (c) The rotated lattice is composed 
of two kinds of vertices v = uo and -uo .  (d) Using the crossing symmetry, we find the rotated 
model. In the rotated model V(uo) is a transfer matrix between two zigzag walls, represented 
by broken line. 

(Fig. 4a). The separation yields two types of  corners. Arrows are placed so 
that at each corner there is one pointing in and one pointing out. We can 
regard a pair of  edges meeting at a corner as a bonding on which an arrow 
is placed. Auxiliary vertices Vjk=2/2  are decomposed similarly: use (2.4') 
instead of (2.4), and separate the east and north edges from the west and 
south ones (Fig. 4b). After auxiliary vertices are decomposed (Fig. 3b), we 
can continuously deform the lattice into a rotated one whose rotation angle 

is given by 

tan ~p = rain (3.3) 

The rotated system consists of  vertices vj~ = Uo and -Uo  (Fig. 3c). The 
orientation of  vertices vjk = Uo is different from that of vjk = - U o  in g/2 
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Fig. 4. Decomposi t ion  of auxi l iary vertices (a) t, = - 2 / 2  and (b) o = 2/2. (c) The or ienta t ion  
of vertices t, = u o is rotated through n/2 by the use of the crossing symmetry.  

rotation. The crossing symmetry (2.5) can be used to rotate the orientation 
of vertices vjk = -Uo through ~/2, with their spectral parameter uo replaced 
by Uo (Fig. 4c). Thus, it follows that the inhomogeneous system (3.1) is 
equivalent to the six-vertex model with V=Uo rotated through 4o with 
respect to the coordinate axes (Fig. 3d). We can analyze the six-vertex 
model rotated through ~0 by considering the inhomogeneous system (3.1). 

The inhomogeneous system (3.1) is investigated by a commuting 
transfer matrices argument. (4) Let ~={~l,~_,  ..... O~M+N} and f l=  
{i l l ,  f12 ..... flu+N} be the arrow spins on two successive rows of vertical 

#zt Iz2 

011 

~2 

Q2 

U+Uo I U 

Q3 ~4 

~5 

Q5 

~8 

U+Uo 
+ x./.2. 
#z7 

u u t.,+xlz 
~M§ UtN-I MtN / ~-&l 

al~-S-I O~l§ I ~iIN 

Fig. 5. One-parameter  family of commut ing  transfer matr ices with m = 2 and n = 1. 
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edges, and It = {#l,P2 . . . .  ,;IM+N} the arrow spins on a row intervening 
between ~ and fl (Fig. 5). A one-parameter family of transfer matrices is 
defined by 

Ifil I i(m+nJ+m-- I 
[T(u ) J~ .p=~  ~ W(pj+I,~Cj+,[ flj+,,Pj+2 [u) 

i = 0  j~ i (m+n)  
( i +  I ) ( m + n ) - -  I 

• I-I w(/L~+,, ~k+~l pk+,,/t~+_, lu+uo+2/2)] 
k = i { m  + n )  + m 

(3.4) 

where PM+N+~ = P l '  The Yang-Baxter relation (2.3) shows that, for all 
complex numbers u and u', T(u) and T(u') commute with each other, being 
simultaneously diagonalized. We denote the eigenvalues of T(u) by T(u). 

We repeat the same argument as in Chapter 9 of ref. 4 to find a matrix 
Q(u) which satisfies the matrix equation 

T(u) Q(u) = ~(u - 2/2) Q(u + 2 - hi) + ~(u + 2/2) Q(u - ). + hi) (3.5) 

with 

@(u) = [sinh (u)/sinh (2)] M [sinh(u + Uo + 2/2)/sinh(2)] N (3.6) 

Since Q(u) commutes with Q(u') and T(u") for all complex numbers u, u', 
and u", we get a functional equation for T(u): 

T(u) Q(u) = ~(u - 2/2) Q(u + 2 -  ni) + ~(u + 2/2) Q ( u -  2 + hi) (3.7) 

where Q(u) is the eigenvalue of Q(u) corresponding to T(u). Detailed 
analyses show that Q(u) must be of the form 

Q(u)= f i  s inh(u-uj )  (3.8) 
j=t 

with an integer r[0 ~<r~< (M+N)/2] .  The zeros uj are determined by the 
condition that the rhs of (3.7) vanishes: 

~'sinh(uj--2/2)'~M~ " s inh(u j+uo)~ lv  

.~sinh(uj + 2/2)J ~sinh(uj + Uo + 2)J 

f i  s inh(uj-  u~ - 2) 
k = l sinh(uj_ uk ~).),  j = l , 2  ..... r (3.9) 

The eigenvalues T(u) can be calculated by solving (3.9), and then by using 
(3.8) in (3.7) with solutions uj. There are many eigenvalues corresponding 
to different solutions of (3.9). 
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After the eigenvalues T(u) are determined, we can get necessary infor- 
mation to investigate the inhomogeneous system (3.1) and hence the 
rotated system by letting u = - 2 / 2  and -Uo. For example, the partition 
function of the rotated system is calculated as 

Z=Tr[V(uo)"]  = ~  [ Vj(uo) r ] 
J 

V,_(Uo) r V3(uo) r ] 
= v , ( u o ) "  1 + (3.10a) 

(3.lOb) 

(3.10c) 

V(uo) = T( - 2/2)" T( -Uo)"' 

Vj(uo) = Tj(--2/2)" Tj(--Uo)"', j :  1, 2, 3 .... 

where Tj(u) [or  Vj(u)] is thej th eigenvalue ofT(u)  [or  V(u)] in decreasing 
order of magnitude. In the rotated system, V(uo) corresponds to a transfer 
matrix acting on zigzag walls (Fig. 3d). 

3.2. Nonlinear Integral Equations 

Following the program given in Section 3.1, we calculate the 
asymptotic behavior of T(u) as l becomes large with m and n fixed to be 
constants. These kinds of calculations are usually achieved by introducing 
a distribution function of the zeros uj. ~3" 4, 9. 12. 16-19) This approach is a very 
cumbersome one, however. We use another approach which was recently 
developed by Klfimper, Batchelor, and Pearce I~1 (KBP) and Kliimper, 
Wehner, and Zittartz ~-'~ (KWZ); see also refs. 21 and 22. Calculations are 
somewhat indirect. Instead of the distribution of uj we investigate the 
analytic properties of the functions in (3.7) and rewrite (3.7) as nonlinear 
integral equations. Then the asymptotic behavior is obtained by the use of 
special values of Rogers dilogarithms. 

As a beginning, we consider the largest eigenvalue in Uo < Im(u)<  )./2, 
which is denoted by Tdu). For convenience, we define a function P(u) by 

P (u ) =~(u+2 /2 )  Q ( u - 2 ) / ~ ( u - 2 / 2 )  Q(u +2 )  (3.11) 

and a function h(u) by 

h(u) = [ 1 + P(u)]/Q(u) (3.12) 

It is helpful to look at some homogeneous limits, where we can use 
results in refs. 3, 4, and 9-11: Considering the case Uo = - 2 / 2 ,  we deter- 
mine r as 

r = (M + N)/2 (3.13) 
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When 1 becomes large with m = 1 and n = 0 ,  IP(u)l = 1 for u on the real 
axis, and the zeros u : a r e  densely distributed on it; Tt(u)  is analytic and 
nonzero (ANZ)  in - 2 / 2  < I m ( u ) < ) . / 2 .  In the m = 0  and n = 1 limit, the 
contour  on which IP(u)[ = 1 moves into the line Im(u) = ti o + )./2, and the 
region where T~(u) is ANZ moves into fro < Im(u) < ti 0 + ~.. For  general 
inhomogeneous cases, it is reasonable to assume the following: 

(i) When 1 becomes large with m and n fixed to be constants, a con- 
tour C defined by IP(u)l = 1 is in the region 0 < I m ( u ) < f r o +  2/2, and the 
zeros uj lie on the contour  C. 

(ii) Tl(u)  is ANZ in fro < Ira(u) < ~./2. 

(See, for example, ref. 13 and 23.) 
The argument in KBP  is repeated for T~(u). We define four functions 

o~(x), f l(x),  a(x) ,  and f l (x)  by 

~x(x) = f l (x)  -- 1 = 1 /P(x  + ie + )./2) (3.14a) 

a(x)  = f l (x)  -- 1 = P ( x  - iO - )./2) (3.14b) 

with a real variable x and positive constants e, ft. Note that 

o~(+ ~ )  = 0Z( • oo) = 1 (3.15) 

When 0 < ~. < 2n/3 and - 5./2 < t2 o < 0, setting e to be e ~ ti o + ~./2, and 
suitably, we consider the Fourier transform of ~(x). The assumption (i) 

shows that r  is ANZ in ~70+~ . /2<Im(u)<n ,  and Q(u) in 
fro + ~./2 - n < Im(u) < 0. We represent ~(x) as 

�9 (x  + ie) Q(x  + ie + 3)./2) 
~(x) = ( - )3 (3.16) 

�9 (x  + ie + in + 2) Q(x  + ie - )./2 - in) 

Taking the logarithm and second derivative of (3.16), and then the Fourier 
transform, we get 

ea'Fk[ln  ~(x)]"  

= [ M + Ne~aO+ ~/2)k_ M e C ~ _ , ) k _  Ne(aO+ 3J./2_,~)k ] k 
1 - e - k n  

+ [e 3~'/2 - e 1*-~/2~k] Fk[ln Q(x)]"  (3.17) 

where we denote by F k [ f ( x ) ]  the Fourier transform of a function f (x ) :  

F k [ f ( x ) ] = ~ - - ~ f ?  f ( x ) e - * - " a x  (3.18) 
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From the assumptions (i) and (ii) it follows that h(u) is ANZ in 
ffo<Im(u)<)./2. On a path with the imaginary part e -2 /2 ,  h(u) is 
represented as 

h(x + ie - i2/2) = fl(x)/Q(x + ie - i2/2) o~(x) (3.19) 

Take the Fourier transform of the second logarithmic derivative of (3.19). 
It follows that 

e;J'/Z Fk[In h(x)]" 

= --e~k/2Fk[ln Q(X)]" +e~kFk[lnfl(X)] "-e~kFk[In ~(X)]" (3.20) 

On a path with the imaginary part - 6  + ~,/2, h(u) is given by 

h(x - i6+i ) -~ /2 )=( - ) r f l ( x ) /Q(x - i6+i2 /2 - i rQ (3.21) 

From (3.21) we obtain another formula for Fk[ln h(x)]": 

e-~J'/2Fk[ln h(x) ]" = e-'~k Fk[ln fl(X) ]" --el"-~/'-~k Fk[ln Q(x) ]" (3.22) 

We solve (3.17), (3.20), and (3.22) for Fk[lno~(x)]" in terms of 
Fk[Infl(x)]" and Fk[lnfi(x)]". It is found that 

Fe[ln ~(x)]" = [ M +  Ne "~~ ke-~k 
l + e  -L~ 

sinh[ (n/2 -- 2)k] + 
2 cosh(,~k/2) sinh[ (n -)~) k/2] 

x {Fk[lnfl(X)]"--e~-'~-~kFk[lnfl(x)] "} (3.23) 

Applying the inverse Fourier transform to (3.23), we get 

[ ln~(x ) ]"=M{ln[ tanhrC(x+ie ) ] }  

+ N { l n [ t a n h r C ( x + i e + u ~  

+ { F ( x - y ) [ l n f l ( y ) ] " - - F ( x + i e - - y - i i + i 6 )  

x [lnfi(y)]"} dy (3.24) 

with 

F ( x ) = l f ~ o ~  sinh[ (re - 2,~) k/2 ] egk. " " 
- 2 c o s h ~ ~  --- ]) k/23 dk 

(3.25) 
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Integrating (3.24); twice gives 

, [ ~n(x+it)]  [ = ] 
l n ~ ( x ) = M m [ t a n n  - ~  . + N l n  tanhn(x+ie+u~ 

+ [F(x--y) ln f l (y)--F(x+ie--y-- iX+i6)lnf l (y)]dy 
- -  c r ~  

+ Cx + D (3.26) 

The asymptotics (3.15) shows that 

C = D = 0  (3.27) 

In a similar way we solve (3.17),(3.20), and (3.22) to find an integral 
equation for In Q(x). We rewrite (3.7) in the form 

T,(x+i~- i2 /2)=q~(x+ie- i2)  Q(x+ie+iX/2- in)  fl(x) (3.28) 
Q(x + ie - iX/2) 

Taking the logarithm of (3.28), and using the integral equation for In Q(x) 
in it, we obtain 

In T](x + ie - i2/2) 

sinh[(n X) 
= In q~(x + ie - iX) -- Mi f 2  _ ~ s i - ~ n ~ ) c o s h ( ~ k / ; ;  )k]dk 

k/2] sin[ (x +"  

- N i  f~  sinh[(n-X)k/2] sin[(x +ie+uo + 2/2)k] dk J - ~ 2k sinh(nk/2) cosh(2k/2) 

i t "~ In fl(y) +--= 
22 - ~  s i n h [ n ( x - y  + i0)/,~] dy J 

i C ~ In fl(y) 
22 - ~  s i nh [n (xZ)~ /+  ie + iS)fi] dy (3.29) J 

The integral ectuations (3.26) and (3.29) are exact for sufficiently large (but 
finite) l. 

As I becomes large, we examine the consistency of the analysis by the 
use of leading terms in (3.26) and (3.29). In the l ~  0o limit, (3.29) shows 
that 

In Tl(u) ~ M In x(u) + N In x(u + u o + 2/2) (3.30) 
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for ti o < Im(u)  < 2/2 with 

sinh(u + 2/2) 
In x(u) = In 

sinh 

- i  ( ~  s i n h [ ( r r - ) , ) k / 2 ]  sin[(u-2/2)k] dk J 
-o~ 2k sinh(nk/2) cosh().k/2) 

sinh( - u  + 2/2) 
= In 

sinh 2 

_ i f  ~ s i n h [ ( n - ) . ) k / 2 ]  sin[ ( - u -  2/2 )k ] 
-~o 2k sinh(nk/2) cosh(~c/2) dk (3.31) 

The asymptot ic  form (3.30) satisfies the analytic proper ty  in the assump- 
tion (ii). When l becomes large, the leading behavior  is given by the first 
and second terms on the rhs of  (3.26). We estimate P(u) as 

P(u)~[tanhn(U+2/2)]MItanhrC(u+u~ J 22  (3.32) 

Equat ion (3.32) is consistent with the assumption (i). If  we denote by p(u) 
the density function of uj along the contour  C, we can calculate p(u) from 
(3.32) as 

N ]  333, 
p(u) =)-~ cosh(tcu/~.) + cosh[n(u  + u 0 + )~/2)/).] 

Using (3.33) in (3.7), we can rederive (3.30). These facts justify the 
argument  from the assumptions (i) and (ii) to (3.29). 

To  find finite-size corrections of  T~(u), we introduce following 
functions: 

a+_(x)=A+__(x)-1= lira 0~[ + ) . ( x + l n  I)/zE] 
I ~ m  

6+_(x)=A+(x)-1 = lira g[  ++_2(x+lnl)/n] 
I ~ et=, 

(3,34a) 

(3.34b) 

Equat ion (3.26) with (3.27) shows that  

In a+_(x) = - 2 [m + n e  -v'=("~ +)4zl/'~ ] e - 'y-;=/~ 

+ Fl * In A ~:(x) -- F_, * In A_+(x) (3.35a) 

In 6+_(x) = -- 2 [m + ne -7-~.o + ~./2vi] e-":v/a~/i 

+ F *  * In A _+(x) -- F~ �9 In A+_(x) (3.35b) 
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where 

Fl(x) = (2/~) F(Xx/n) (3.36) 

F2(x) = (X/T t) F[ Xx/~ +_ i(e + (5 - X)] 

and f ,  g(x) is the convolution of two functions f ( x )  and g(x): 

f ,  g (x )=  f ( x - - y ) g ( y )  dy (3.37) 

From (3.15) and (3.35), we deduce that 

a •  = 1, a •  = 0 (3.38a) 

62(00)=  1, d•  = 0  (3.38b) 

It follows from (3.29) that 

In Tl(x  + ie -- i2/2) 

= M In x(x  + ie - i2/2) + Nln  K(x + i~ + uo - iX) 

i - ~  - 
tde~(.,+i,v ~ [ lnA+(y )  e-~'-i~/~+lnX+(y)e-. , '+i~/~.]dy 

i e_n(x+~)/~ + ~ J~- o~ [ln A _(y)  e-Y+ i=/~ + In A_(y)  e-Y-i~/~] dy 

+ o(1/l) (3.39) 

The integrals on the rhs of (3.39) are expressed in terms of Rogers 
dilogarithms. From (3.35) we obtain 

2[m + n e  ~"('~ f : ~  e-"~;~"/~{ln A•  + [ln A• & 

+ 2[m.+ ne w,(,,0 + )./2)/X] f:oD e--" • ia"/2{ In A •  [ln .4 +(x)]'} dx 

= {[ln a•  l n A + ( x ) - l n a • 1 7 7  dx 

+ { [ln d•  l n A + ( x ) - - l n ~ • 1 7 7  dx (3.40) 
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Integrating the lhs by parts and using (3.34), we get 

4 [ m + ne ~ ~ ' ~  + ~/2)/~ ] 

x f ~  dx [e-X~:'~"/~ In A +(x) + e - '+ia"/~ In ,4+(x ) ]  
--,zc_ 

= - ~ d a • 1 7 7 1 7 7 1 7 7  
) 

f 
d + _ (  ~ ) 

+ d d + [ d ~ _ l l n ( l + d + ) - - ( l + d •  (3.41) 
d +  ( - -  ~J  ) 

Substitute the asymptotics (3.38) into (3.41). It follows that 

4 [ m + n e  ~ ~ ,,0 + ;./2 I/~ ] 

x f ~  dx [e  -.,-:~i=/~ In A • + e -"• In A •  

= 4L + ( 1 ) = 4L( 1/2 ) = n'-/3 ( 3.42 ) 

where L + ( a )  is a dilogarithmic function defined by 

L + ( a ) = ( 1 / 2 ) I ~ d b [ b - t l n ( l + b ) - ( l + b ) - ~ l n b  ] (3.43) 

and L(a)  is the Rogers dilogarithm: ~24~ 

L ( a ) = - ( 1 / 2 )  f ~ ' d b [ b - ~ l n ( 1 - b ) + ( 1 - b ) - ~ l n b ]  (3.44) 

The dilogarithmic functions are related to each other by 

L + ( a )  = L [ a / ( 1  + a ) ]  (3.45) 

Using (3.42) in (3.39), and after some calculations, we find that  

In T~(u) = M in x(u)  + N x ( u  + Uo + 2/2) 

n e n'l~ n e - n,,l~. 
- -  +o(1 / I )  (3.46) 

+ 121 m + ne - ~ ,,o + ;./2 v~ + 12l m + ne "~''~ + ;./2 v~ 

for ~o<  I m ( u ) <  ~./2. In the first stage of the calculation we assume that  
0 < ,~ < 2n/3 and that - ~./2 < Uo < 0. For  regimes 0 < ~. < 2n/3, 0 < t2o < ~./2 
and 2n/3 < ~. < n, - )./2 < fro < )./2, the same method is applied with some 
deformations of  paths of  Fourier  integrals. We find that  the result (3.46) is 
valid throughout  the entire gapless regime 0 < ~. < n, - ~./2 < ti o < ,~/2. 
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The next largest eigenvalues in ~ 0 < I m ( u ) < ] . / 2  are calculated 
similarly. We repeat almost  the same argument  as KWZ.  When 1 becomes 
large with m and n fixed to be constants,  we obtain 

In T,.,.,.(u) = M In x(u) + NK(u + Uo + 2/2) + porri 

+ 7  - - x +  - - s  
/ '/l "4- l i e  --n(u0 + 2/21/.~ 

+ 1  - x + - - + s l  - -  + o  (3.47) 
12 J m + ne " ' ~  +)'/21/i 

where P0 corresponds to the lattice momen tum,  whose explicit form is not 
important  here; the scaling dimension x and the spin s are given by 

1 --  2 / n  $ 2  5"- 
x =  + + k + / ~  (3.48a) 

2 2( 1 - 2/7r) 

s =  S g  + k - [ c  (3.48b) 

with an integer o e and nonnegative integers S, k,/~ (see also ref. 16 and 19); 
the number  of  zeros in (3.8) is related to S by 

r = ( M  + N)/2 - S (3.49) 

3.3. Spat ial  Anisotropy and Conformal  Invariance 

Now, using the results calculated in Section 3.2, we investigate the 
six-vertex model on a rotated lattice. Emphasis  is placed on finite-size 
corrections of  the part i t ion function Z. Finite-size properties of  the model 
are discussed from the viewpoint of  the conformal field theory. 

Set u = - 2 / 2  and - u o  in (3.46) and (3.47). Substituting 7"( -2 /2)  and 
T ( - u  o) into (3.10c), we find that  

In V~'(Uo) ~ ( M M '  + N N ' )  In h'(Uo) + (Tr/6)(I'/l)/F'- (3.50a) 

l ' 1  I 'A 
In V,.vl(uo) J ~(u~ t' ~ - 2 n x  7 ~-5_, - 2n is 7 - -F  2 (mod 2zri) (3.50b) 

where 

F 2=y ' -  cos 2 0 + y - z  sin 2 0 

A = (7-' -- Y--') sin 0 cos 0 

(3.51a) 

(3.51b) 
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with 

(redo + ~ ) n 
y 2 = t a n \ 2  ~ ~ , 0 = ~ 0 + ~  (3.52) 

(see, for example, ref. 25). 
The bulk contribution is given by the first term on the rhs of (3.50a). 

The per-site free energy f is calculated as 

f =  - I n  X(Uo) (3.53) 

It is shown that f is independent of the rotation angle rp, which is an exten- 
sion of the numerical result by LP. 

We define the leading finite-size correction of the partition function 
Z by 

Z~= lim Z/~c(Uo) m (3.54) 
L I'  ~ .~, 

where the limit is taken with the ratio 1'/I fixed. 17' 13. 26~ If the ratio I'/1 is 
small, the partition function Z can be expanded as (3.10a). 

We consider the case of isotropic interactions, where Uo=0. From 
(3.52) it follows that ),2= 1. Substituting y2= 1 into (3.51) gives F 2 =  1 and 
zJ = 0. Within the validity of the expansion, it is found that Z,. is a function 
of the ratio I'/1 but is independent of the rotation angle 9. This result 
shows that the system is invariant under dilatations and rotations. Note 
that a conformal transformation can be regarded as a combination of 
translations, dilatations, and rotations locally. Though the global transfor- 
mations cannot be generalized to local ones directly, it is suggested that the 
system is conformably invariant. 

The conformal field theory shows that Z,, must be written in the form ~7~ 

Z,. = Tr( q Lo - ,./24 qz:o - ,./24 ) ( 3.55 ) 

where 

with 

q = exp(2rrir), c]= exp( -2n f f )  (3.56) 

z = il'/I, f =  - i l ' / l  (3.57) 

and Lo,/So are Virasoro generators; Lo +/~o generates translations along 
the vertical direction, and i ( L o - L o )  along the horizontal direction. The 
expansion (3.10a) with (3.50) is consistent with (3.55). It follows from 
(3.50a) that the central charge c = 1. The scaling dimensions of low-lying 
excitations are given by (3.50b) with (3.48a). 
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Fig. 6. For most anisotropic systems conformal invariance is restored by deforming the 
geometry of the lattice. 

For most anisotropic systems z and f are replaced by 

r=( l ' / l ) ( i+A) /F  z, f = ( l ' / l ) ( - - i + A ) / F  2 (3.58) 

Equation (3.58) shows that the anisotropic system has the same finite-size 
correction Z c as the conformal invariant one if the geometry of the 
anisotropic system is deformed as follows (Fig. 6):1131 stretch the original 
rectangular lattice along either of the two coordinate axes ( r ~ r F - ' ,  
f---~ fF2), shear it into a parallelogram ( r ~ r - d l ' / l ,  f ~ f - d l ' / l ) ,  then 
impose on it periodic boundary conditions in both directions. Locally, the 
deformation corresponds to an anisotropic resealing of length by an 
amount of y2 along a direction rotated through 0 from the coordinate axes. 
Note that y2 is independent of the rotation angle 0. We find that conformal 
invariance of the anisotropic system is restored by the anisotropic resealing. 

4. S U M M A R Y  A N D  D I S C U S S I O N  

We analyzed the six-vertex model on a square lattice rotated through 
an arbitrary angle q~ with respect to the coordinate axes by a new method. 
We introduced auxiliary vertices into a rotated system to relate it to an 
inhomogeneous one in the natural orientation q~ = 0. The inhomogeneous 
system led to a one-parameter family of commuting transfer matrices. It 
was shown that a product of commuting transfer matrices can be inter- 
preted as a transfer matrix acting on zigzag walls in the rotated model. We 
solved an equation for commuting transfer matrices to  determine their 
eigenvalues. 

We considered the gapless regime of the six-vertex model. Supposing 
that the model is on a torus of size I x l', we investigated the leading finite- 
size correction Z,. of the partition function. The finite-size correction Z,. 
was expanded by the use of some largest eigenvalues of the zigzag-wall 
transfer matrix. When interactions are isotropic, it was found that Z,. is a 
function of the ratio l'/l, but is independent of the rotation angle q~. From 
this fact it was suggested that the model is conformably invariant. For most 
anisotropic systems, reflecting a breakdown of the rotational invariance, 
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extra factors F 2 and A appear in Zc. We showed that the rotational 
invariance is restored by an anisotropic rescaling of length by an amount 
of y-" along a direction rotated through 0( = q~ + ~/4) with respect to the 
coordinate axes. The factor y2 was determined as a function of the spectral 
parameter zi o and the crossing parameter 2 in (3.52). The problem of the 
rotational invariance has been discussed in refs. 12 and 27 for two orienta- 
tions rp = 0 and n/4. Our results are consistent with the argument in refs. 
12 and 27. We note that essentially the same expression for ),2 has been 
found in analyses for hard squares, magnetic hard squares, and the q-state 
Potts models. ~-~'27) It is expected that (3.52) is a general expression for 
solvable models on square lattices. 

It is known that, if a square lattice is drawn diagonally, the geometry 
is convenient to consider relations between the six-vertex model and the 
X X Z - H e i s e n b e r g  chainJ 4' ~4, 28-3o~ Analyses of finite-size properties in the 
critical X X Z  chain have been undertaken by many authors; see, for example, 
refs. 17-19. It is useful, however, to reexamine these properties by the use 
of eigenvalues of the diagonal-to-diagonal transfer matrix of the six-vertex 
model. Here, fixing the rotation angle to be O = q ~ + n / 4 = n / 2  with 
m = n =  1, we investigate the X X Z  chain. Substituting 0 = n / 2  into (3.51) 
and (3.58) gives 

r = i ( l ' / l )y  2, ~ =  - i ( l ' / l )  y2 (4.1) 

with 

y2 = tan \ 22 

We define the Hamiltonian H of the X X Z  chain of 2l sites by 

2/ 

H =  ~, (a)"a)"+, +a~'aj'+, +cos). a;a;+,) (4.3) 
j = l  

where a-", a.", a-- are Pauli spin matrices and a2~+l is to be interpreted as 
a~. The diagonal-to-diagonal transfer matrix V is expanded around 
~o = - 2 / 2  as 

V = I - ( 2  sin ~.) -~ (cos 2 I +  H) ~ 0 +  -.. 
(4.4) 

Uo = - 2/2 + fiUo 

where I is the identity matrix. From the partition function Z of the six- 
vertex model, we can determine the partition function Z H of the X X Z  
chain by setting 6~o=2( f l / l  ') sin ,~, and then by taking t h e / ' - - ,  oo limit. 
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When fl>>21>> 1, we can use the expansion (3.10a) with (3.50). We 
calculate the leading behavior  of the free energy FH of the X X Z  chain as 

F H = 2 t i l e -  (fl/21) v(nc/6) + ...  (4.5) 

where the per-site ground-state  energy e is given by 

~ _ s i n  - [  ~ s i n h [ ( n - 2 )  k/2] dk (4.6) 
e = cos 2 J - ~  sinh(nk/2) cosh(2k/2) 

The ill21 correction term shows that  the central charge is c = 1. The effec- 
tive light velocity v is determined by the derivative of  y-" at ti o = - 2 / 2  as 

v = (2n/,~) sin 2 (4.7) 

In (3.55) the finite-size correction Z,. of  the six-vertex model was 
represented as a function of r and f. Note  that  the rescaling factor 72 
becomes 0 in the f ro - - - ' - ) . / 2  limit, where interactions are extremely 
anisotropic. Taking the 1' ---, oo limit has the effect of  replacing the ratio 1'/1 
of the six-vertex model by the ratio ill21 of the X X Z  chain. We denote by 
ZH: ,. the leading finite-size correction of the parti t ion function of the X X Z  
model. Within the validity of the expansion (3.10a), we find that 

ZH;,.= lim Z,.(r, f )=Z<. ( rH,  fH) (4.8) 
/ ' 4  c~c 

where the limit is taken with Jffo=2(fl/l  ') sin 2 and 

rH = lim r=i(f l /21)v,  fH = i i m  f = - - i ( f l / 2 1 ) v  (4.9) 

When 2l>> fl >> 1, it is convenient to see the lattice from a n/2 rotated 
frame. 13~ This is achieved by the change in the spectral parameter  li 0 into 
- t 7  o. In (4.1) ~,2 is replaced by 

/nao n \  
y2 = c o t  ~ - - ~ + ~ )  (4.10) 

We set ~o = - 3 . / 2 + ~ f f o  with OOo=2(fl/l) sinJt and take the l--+ ~ .  For  
2l '  >> fl ~ 1, FH is calculated as 1321 

FH = 21'fie -- ( 2l' /fl) v- l (nc/6)  + ...  (4.1 1) 

The 2l'/fl correction term in (4.11) is also found from (4.8) by assuming the 
invariance of Z,. under the modula r  t ransformat ion r ~ - l / r ,  f ~  - 1 / f .  

822/82/5-6-21 
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Final ly ,  it m a y  be w o r t h  po in t i ng  ou t  tha t  the  auxi l ia ry  vert ices  
m e t h o d  has  va r ious  app l ica t ions  besides analyses  for ro ta t ed  models .  F o r  

example ,  we can  show tha t  the m e t h o d  is d i rec t ly  app l i cab le  to t ransfer  

ma t r ix  ca lcu la t ions  for so lvable  mode l s  on  t r i angula r ,  h o n e y c o m b ,  and  

K a g o m 6  lattices. These  analyses  will be r epo r t ed  in fur ther  publ ica t ions .  
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